

 [image: Cover page]

 Setting up Sigasi
Distribution and flavours
Sigasi is distributed online. It is available in two versions: as a stand-alone application or as a plugin inside a standard Eclipse installation. Your license gives you the right to use either version,at any time, at your discretion. Therefore, your first task is to decide which version suits your requirements, based on the description below. Depending on the chosen version, you should then follow the corresponding installation instructions.
Sigasi App
The stand-alone application has the following characteristics:
	Recommended if you are not using Eclipse yet
	Installation is trivial: just unzip!
	Everything is included in a single download
	Well balanced set of features
	Optimized for VHDL development
	Complete freedom to add and configure plugins

Sigasi Eclipse plugin
The Eclipse plugin has the following characteristics:
	Recommended if you are using Eclipse already
	Easily plugged in into your existing Eclipse platform
	Complete freedom to add and configure plugins
	Over one thousand eclipse plugins choose from
	Support for C, C++, Tcl and other languages
	Support for many version control systems

Installation of Sigasi App
To download and install Sigasi HDT as a stand-alone application, follow the online Installation Instructions.
After downloading, choose or create a folder where you want to install the software, and unpack the archive there. The archive contains a single top-level folder called sigasi. Inside the folder there is an application startup file, also called sigasi. Start the application by executing this startup file.
Installation of Sigasi HDT Eclipse Plugin
To download and install Sigasi HDT as an Eclipse Plugin, first check which Eclipse version you are using. Then follow either the Installation Instructions for Eclipse 3.6 (Helios) or 3.7 (Indigo) or the Installation Instructions for Eclipse 3.5 (Galileo).
Licensing
For small projects, all features of Sigasi can be used without a license. You can monitor the relative size of your VHDL projects in the right corner of the status bar:
[image:]
The relative size is shown as a percentage. For projects larger than 100%, the size indication area turns red and Sigasi 2.0 falls back to a base-line modus (which is still more powerful than any other editor). To enable full Sigasi support for such projects, you need a valid license. The license key can be filled in under Window > Preferences > VHDL > License Key.
Configuration
Sigasi HDT stores its projects on the file system in one or more workspaces.
When you start the tool for the first time, it will propose to create a workspace for you:
[image:]
Although you can work with multiple workspaces, we recommend to use a single workspace for all your projects.
Software updates
Sigasi HDT has an automated update system. When updates are available, you are notified by a pop-up window called Updates Available in the bottom right corner:
[image:]
If you want to install the updates, click anywhere in the pop-up window. After a few seconds, a new window will appear with further instructions.
The updates can be postponed by closing the pop-up. You can perform the updates at any time by clicking the [image:]-icon in the status bar at the bottom of the screen.
Consult the troubleshooting section if the update does not start automatically.
Setting up a project
Introduction
Your work with Sigasi typically is organized as a project. A project is a collection of VHDL files that belong together. Sigasi understands the VHDL units defined in the files, and the relationships between them.
Your first step is to set up a project. There are a number of ways to do this:
	Creating a new empty project
	Importing a project from the file system
	Importing a project from an archive

Each of these methods is discussed in detail in the following sections.
Creating a new empty project
To create a new project, select File > New > Empty VHDL Project. Then give your project a name.
By default, the Use default location checkbox is checked, which means that new projects will be located in the workspace folder. Alternatively, you can uncheck the checkbox and choose an arbitrary location for your project.
After creating a new project, you can add existing files by dragging them from your filesystem into the project explorer. New files can be added by clicking File > New > VHDL file.
Importing a project from the file system
You can import an existing project from the file system by clicking File > Import > General > Existing projects into Workspace, and selecting Select root directory. Browse to the root directory of the project, and press Finish.
By default, you will work on the project files in their original location. If you want to copy the project files in the workspace instead, uncheck Copy projects into workspace before importing.
Importing a project from an archive
Sigasi projects can be shared using file archives. All project-related settings are stored in two hidden files in the project folder. Therefore, you can create an archive of the entire top level folder (File > Export > General > Archive file) and send it to someone else.
You can import a project from an archive by clicking File > Import > General > Existing projects into Workspace, and selecting Select archive file. Browse to your project archive, and press Finish.
User Interface
The VHDL perspective
Sigasi is built upon the Eclipse platform, which permits to use multiple languages within a single environment. The user interface can be customized for a particular language. In Eclipse terminology, this customized user interface is called a perspective. The logo of the current perspective is higlighted in the upper right corner. The recommended perspective to use with Sigasi is the VHDL perspective, with the following logo:
[image:]
If you use the standalone version, this is the default perspective. If you use the Eclipse plugin, another perspective may be open instead. You can select the VHDL perspective by clicking the button [image:] next the perspective logo. A window pops up in which you can select the perspective:
[image:]
Project views
When you open a project in Sigasi HDT, a number of views are presented in the user interface. Here is a typical screenshot, with the views highlighted:
[image:]
The functionality of the views is as follows:
Project Explorer view
This view is a hierarchical representation of all files in all projects. You can use it to navigate to a particular file in a
particular project and select it.
Editor view
In this view, the contents of the currently selected file are shown. The file contents can be directly edited here.
Problems view
In this view, all problems that were detected in the current project are listed.
Outline view
This view shows the contents of the selected file in terms of VHDL objects. You can use it to review the content, and to navigate to a specific VHDL object.
Hierarchy view (coming soon)
This view shows the VHDL design hierarchy below the selected top level object.
Project view usage
The views provide alternative ways to access the information in a project. They permit efficient navigation, inspection and editing.
The Project Explorer view shows the file contents of the project. When you click on a file, it is opened in the Editor view.
In the Editor view, you can edit the contents of a file. It is a tabbed view so that multiple files can be open for editing simultaneously. The currently selected file is the active file.
The outline view is always synchronized with the active file. It displays the contents of the active file in terms of the VHDL objects that it contains.
The hierarchy view displays the VHDL design hierarchy below the selected top level object. You can select a top level from the available candidates in a pop-up window after clicking Select toplevel.... Alternatively, you can right-click on an architecture in the outline or hierarchy view and click Set as top level.
When you double-click an object in the hierarchy, the Editor view is updated accordingly, possibly by displaying the contents of a different file.
You can further customize the behavior of the Project Explorer view in ways that can be particularly handy for large projects. For example, the Project Explorer view can be linked with the Editor view by clicking the link icon [image:].
Furthermore, you can use filters to define which files are shown. Select the icon View Menu [image:] and then Customize view. You can then select a filter whose matching files will be hidden in the view.
Project exploration and navigation
Sigasi HDT offers powerful techniques to explore a project and navigate through it.
Hovering To find the declaration of a given identifier, hold your mouse pointer over it. After about a second, a popup shows you the name and datatype of the signal. This technique is called hovering.
Highlighting If you click on an identifier, it is highlighted. In addition, all other occurrences of the identifier that refer to the same object are highlighted. Note that this highlighting is intelligent: it is not based on the identifier’s string value, but on the object that the identifier refers to.
Navigate to a declaration You can easily navigate to the declaration of any port, signal, entity, etc. Place the cursor on the identifier, right-click and select Open Declaration. The editor immediately switches to the line that declares the object. Since this operation is so commonly used, it is assigned to the shortcut key F3.
Finding object occurrences To look for occurrences of a given identifier in different files, place your cursor on the identifier and right-click. Now select Search References. A search window will appear on the bottom of your workbench, displaying all occurrences of the selected identifier. You can easily navigate through all occurrences by clicking the Show Next Match arrow [image:] and the Show Previous Match arrow [image:] in the search result view. Note that all occurrences are highlighted and marked with a small arrow at the left border of the editor for easy recognition.
VHDL Libraries
Introduction
VHDL libraries are a very powerful feature of the VHDL language. Sigasi makes it easy to configure and use them. In this chapter, we assume that the basic concepts of VHDL libraries are understood. We will explain how they are implemented in Sigasi.
Like with any VHDL tool, Sigasi HDT needs to know where the libraries are located on the file system. We will describe how the library configuration can be examined and modified using the GUI.
We will also present some use case about how to set up VHDL libraries
with Sigasi HDT to organize your projects.
Examining the library configuration
You can examine the library configuration in the Project Explorer view. Each physical file or folder is annotated with the VHDL library it belongs to, between square brackets:
[image:]
What you see here is the initial library mapping of a demo project (you can create such a project by selecting File > New > Other > Demo Vhdl project). We see a project called Demo, with a folder named Common Libraries. In that folder, you see the typical standard libraries (std and ieee) upon which all VHDL projects depend. The demo project itself consists of a few VHDL files.
Next to the project’s name, Demo, is the annotation work. This means that, barring any overrides, everything in the project will be stored inside the work library.
Lower down, we see overrides. For example, the STD folder has an annotation std. This means that, again barring any further overrides, the entire contents of the STD folder will be mapped into the library std. There are no limits to the number of overrides that can be performed. If this needed, any individual file can be mapped to a separate library.
Modifying the library configuration
The library mapping for project files can be modified in the Project Explorer view.
Select a file or a folder in the Project Explorer and right-click.
[image:]
You get a Library Mapping context menu, with a a number of options:
	Select the name of an existing library to map the file or folder to that library
	Select Unmap to exclude the file or folder from any library
	Select New Library to define a new VHDL library and map the file or folder to it

When you map a file into a library, only that file is affected. However, when you map a folder into a library, then everything in that folder will be mapped into that library. Any overrides in the folder and its sub-folders will be removed. When you are defining the library mapping for a new project you should map from top to bottom.
So in the case of our Demo project, you would change (if work is not a good default) the top folder’s mapping first and then override the mapping in the sub-folders. Note that when you would change the library mapping of the Demo project, then as consequence, the ieee and std mappings of the IEEE, IEEE Synopsys and the STD folders would also change. Most likely, you want to re-apply the standard mappings to those folders so as to conform with the VHDL standard.
When you are changing the library mapping of a project, the project will be rebuilt completely. In order to avoid several consecutive rebuilds while you are setting up your libraries, you can temporarily disable the automatic rebuilds, until you are finished setting up your library mappings. You can do this by disabling the Project > Build Automatically option.
To exclude a file from all libraries, the library mapping context menu provides an Unmap option. You can apply that to any file or folder in the project. Sigasi will then assume that the corresponding resource is not a part of the project and will not include that resource in a project build. This is typically useful when you have stale copies of VHDL files or folders lying around that you want simply to be ignored.
Common libraries
In any newly created VHDL project, the Common Libraries folder contains the VHDL files of the IEEE and STD libraries. This folder is special in the sense that its contents is not stored in regular files on your hard drive. Instead, the files' contents is shipped as part of the Sigasi installation. Other than that, the Common Libraries folder behaves like any other folder. You can delete it, rename it, and apply a different library mapping. In most cases, however, the default configuration is just what you need.
If you have modified the Common Libraries folder, you can always revert it back to the original state.
Right-click on your project in the explorer view and apply menu-entry Restore Common Libraries.
[image:]
Shared libraries
Sigasi allows you to share libraries between multiple projects. The easiest way to do this, is to develop each library in a separate project and configure the Project Dependencies accordingly. To configure the project dependencies, right click the project (the one that uses the shared library) and select Properties. Next click Project References and mark the library project as referenced project.
Video demonstration
Using third party libraries
Many projects use third party libraries. These can be added to the project as any other set of VHDL files.
A number of popular third party libraries are the following:
	Vendor	 Library 	 Install dir example
	Xilinx 	unisim 	 C:\Xilinx\13.2\ISE\vhdl\src\unisims
	Xilinx 	XilinxCoreLib 	 C:\Xilinx\13.2\ISE\vhdl\src\XilinxCoreLib
	Xilinx 	simprim 	 C:\Xilinx\13.2\ISE\vhdl\src\simprims
	Altera 	altera_mf 	 C:\altera\81\quartus\libraries\vhdl

As an example, we will show how to configure the XilinxCoreLib, unisim and altera_mf
XilinxCoreLib
	Disable the Project > Build Automatically option.
	Use your file explorer (Explorer, Nautilus, Finder) to browse to C:\Xilinx\13.2\ISE\vhdl\src\.
	Click and drag the XilinxCoreLib folder to your project.
	In the popup, click Link to files and folders and uncheck the option: Create link location relative to:.
	Right click the XilinxCoreLib folder and select Library Mapping > New Library.
	Enter XilinxCoreLib as new library name.
	Re-enable the Project > Build Automatically option.

Unisim
	Disable the Project > Build Automatically option.
	Use your file explorer (Explorer, Nautilus, Finder) to browse to C:\Xilinx\13.2\ISE\vhdl\src\.
	Click and drag the Unisims folder in your project.
	In the popup, click Link to files and folders and uncheck the option: Create link location relative to:.
	Right click the Unisims folder and select Library Mapping > Unmap.
	Right click the Unisims\unisim_VCOMP.vhd file and select Library Mapping > New Library.
	Enter Unisim as new library name.
	Re-enable the Project > Build Automatically option.

In case your project depends on more than just the unisim_VPKG package, map the entire Unisims to Unisim instead.
Altera_mf
	Disable the Project > Build Automatically option.
	Use your file explorer (Explorer, Nautilus, Finder) to browse to C:\altera\81\quartus\libraries\vhdl.
	Click and drag the altera_mf folder in your project.
	In the popup, click Link to files and folders and uncheck the option: Create link location relative to:.
	Right click the altera_mf folder and select Library Mapping > New Library.
	Enter altera_mf as new library name.
	Re-enable the Project > Build Automatically option.

VHDL editor
In addition to the powerful features of an Eclipse editor, the VHDL editor that comes with Sigasi supports a number of advanced editing features which are specifically useful for VHDL editing. These are described in this chapter.
Block selection
Block selection is an alternative for standard (paragraph) selection. Block selection mode differs from standard selection mode in that it allows to select rectangular regions, or to set the cursor over multiple lines. Block selection is ideal for selecting vertical regions, for example a column of a table or all port names in a port map.
[image: Block selection]
Block Selection Mode
To toggle between normal and block selection modes use Alt+Shift+A or press the Toggle Block Selection icon in the tool bar.
Move and Duplicate lines
You can easily move lines up and down by pressing: Alt+Up and Alt+Down.
You can duplicate your current line, or the lines of the current selection by pressing: Ctrl+Alt+Down.
Remove Trailing Whitespace
The action to remove trailing whitespace is hidden by default. You can access it by pressing Ctrl+3, type RTW and then select the correct action. Alternatively, you can bind this action to a keyboard shortcut of your preference.
Code Formatting
You can format your code by pressing Ctrl+Shift+F, or selecting Format in the context menu of your VHDL editor view. Code formatting performs the following actions:
	Indent code
	Vertically align (make sure that colons and assignment symbols are nicely aligned above each other)
	Remove trailing whitespace
	Remove extra empty lines

Stuttering
Stuttering is an editing technique popularized by Emacs, that lets you type certain things really fast. Stuttering means that you tap a certain key twice and it expands to something more complex. For example, press the period key . twice, and the editor will expand it to a right arrow =>. Stuttering works like double clicking: if you type keys slowly, the stuttering mechanism will not be triggered.
The following stuttering keys are available:
	Keys 	Effect
	 ,, 	 <=
	 .. 	 =>
	 :: 	 :=

Stuttering can be disabled or enabled in Window > Preferences > VHDL > Enable Stuttering.
Lightweight editor for large files
Sometimes you have to deal with very large VHDL files such as large concatenated library files and generated files. Unfortunately the Sigasi VHDL editor can not cope with huge VHDL files yet. Large files stress the interactive compiler too much to give timely feedback.
To allow you to edit large VHDL files the Sigasi IDE contains a lightweight VHDL editor that can handle all files without problems. This editor does not analyze your files a type time. It only offers syntax highlighting and the default Eclipse editing features. The lightweight VHDL editor will check for errors when you save your file.
The current threshold VHDL file size that is used to switch to the lightweight editor is 1 MB.
Troubleshooting
I want a clean restart
If you ever suspect that the state of your project is inconsistent in Sigasi, you can always force a complete clean compilation by selecting Project> Rebuild Project.
The user interface is unresponsive
If the user interface of Sigasi HDT is unresponsive, you can always interrupt the internal compilation process by pressing the stop button in the progress view. To activate the progress view, select Window > Show View > Other... > General > Progress, or click the tiny conveyor belt icon [image:], on the right side of the status bar.
The editor displays old contents of a file
If you edit a file outside of HDT with an external editor, HDT will normally notice the changes and ask you what to do. If it doesn’t, you can refresh the editor’s content by pressing F5 or by right-clicking a file or a project in the project explorer and selecting :menuselection:`Refresh`.
What version am I running?
You can check if you have the latest update by clicking on Help > About Sigasi > Installation details. The version number contains the date of the release. (For example, version 2.0.1.20110809... was released on August 9, 2011.)
How much local history will be stored?
Sigasi HDT stores the history of your file so that you can compare your current version with the version you saved an hour ago.
You can define how much disk space is used for storing local history in Windows > Preferences, select General > Workspace > Local History.
For more information on local history, check out this page.
HDT analyzes VHDL files that I do not need
By default, HDT assumes that all VHDL files are part of the project. However, some projects may contain multiple files with older or alternative definitions of a VHDL object. In such a case you will want HDT to ignore certain files.
To exclude files (or directories) from analysis, consult the VHDL library setup section.
Ignored resource are decorated with a [image:] icon in the project explorer view.
How can I change the font size?
Sometimes you want extra small fonts, so that you can fit more content on your screen. Another time you
may want extra large fonts, so that you can use a beamer and your audience can see what you are doing.
Most fonts, including the font that is used by the editors, can be controlled in the preferences:
Window > Preferences. Fonts are controlled in General > Appearance >Colors and Fonts. The font of the editors are in Basic > Text font.
Some fonts cannot be controlled in this preference page. These fonts are defined by general system settings, and are used for writing the menu names, the Project Explorer view and the Outline and Hierarchy views. On Windows, you can change these fonts by changing your font settings in the Windows Control Panel. On Linux, these fonts are controlled by a settings file: ${HOME}/.gtkrc-2.0 . You can change the font by adding a line like:
gtk-font-name = "Sans 10"`
You have to restart Sigasi HDT before these changes take effect.
I do not get automatic updates
If the updates are not automatically fetched from the Sigasi update server you are probably behind a firewall or proxy server. You can configure HDT’s proxy settings in Window > Preferences > General > Network connections. If you can not add a firewall exception for our update site, the fall back solution is to download the complete application from our website. You can completely replace your old installation; all settings are stored in your workspace (the default is workspaceSigasi in your home directory).
Keyboard shortcuts
As you become more experienced with Sigasi, you will find that there are a number of actions that you perform quite often. At some point, you may feel that the GUI-based approach becomes too slow for these actions. For that reason, Sigasi provides a number of keyboard shortcuts. They are a great way to boost your productivity.
In this chapter, we describe the available keyboard shortcuts.
Top keyboard shortcuts
In this section, we list the most important shortcuts.
Open Resource (Shift+Ctrl+R)
Shift+Ctrl+R opens a dialog that allows you to swiftly open an editor on any file in the workspace.
Open Declaration (F3)
Use F3 to navigate to the declaration of the selected identifier.
Backward History (Alt+Left)
Often, when you navigate to a declaration you want to go back to where you came from; just press Alt+Left.
Content Assist (Ctrl+Space)
With content assist (autocomplete) you can really speed up coding VHDL. Just press Ctrl+Space to get a suggestion of possible autocompletes in the current context.
Go to next marker (Ctrl+.)
Does your file contain warnings or errors? Quickly navigate to the next problem by pressing Ctrl+. (Ctrl+, jumps to the previous problem).
Quick Fix (Ctrl+1)
To fix problems even quicker, navigate to the problem with the previous shortcut. Press Ctrl+1 to activate the quickfix, select the fix with the UP or DOWN keys and execute the quickfix with Enter.
Go to Line (Ctrl+L)
You can directly jump to a certain line with this shortcut. You can display the line numbers by right-clicking on on the gray bar on the left side of the editor view (‘the gutter’) and clicking on Show Line Numbers.
Search references Shift+Ctrl+G)
To search for all occurrences of a given identifier, just select the identifier and press Shift+Ctrl+G. The search view is displayed, with a match for each occurrence (possibly in multiple files).
Rename Refactoring (Shift+Alt+R)
Once you get used to the rename refactoring you will be using it all the time. Use Shift+Alt+R to run it even quicker.
Toggle Block Selection (Shift+Alt+A)
Switch between regular and block selection mode.
Quick Access (Ctrl+3)
Ctrl+3 is the shortcut to use, when you forgot the shortcut you actually need. With Quick Access you can quickly find open editors, available perspectives, views, preferences, wizards, commands, etc. Simply start typing the name of the item you wish to invoke.
Keyboard shortcut reference
Basic editing
	Description 	Keyboard shortcut
	Delete 	Delete
	Copy 	Ctrl+C, Ctrl+Insert
	Paste 	Ctrl+V, Shift+Insert
	Cut 	Ctrl+X, Shift+Delete
	Undo 	Ctrl+Z
	Redo 	Ctrl+Y
	Select All 	Ctrl+A
	Toggle Block Selection 	Shift+Alt+A

Quickfixes
	Description 	Keyboard shortcut
	Quick Fix 	Ctrl+1

Autocompletion
	Description 	Keyboard shortcut
	Content Assist 	Ctrl+Space

Basic Search
	Description 	Keyboard shortcut
	Find and Replace 	Ctrl+F
	Find Next 	Ctrl+K
	Find Previous 	Shift+Ctrl+K
	Incremental Find 	Ctrl+J
	Incremental Find Reverse 	Shift+Ctrl+J

Files
	Description 	Keyboard shortcut
	Print 	Ctrl+P
	New 	Ctrl+N
	Rename 	F2
	Close All 	Shift+Ctrl+F4, Shift+Ctrl+W
	Refresh 	F5
	Close 	Ctrl+F4, Ctrl+W
	Properties 	Alt+Enter
	Save 	Ctrl+S
	New menu 	Shift+Alt+N
	Save All 	Shift+Ctrl+S

Navigation
	Description 	Keyboard shortcut
	Last Edit Location 	Ctrl+Q
	Open Resource 	Shift+Ctrl+R
	Backward History 	Alt+Left
	Show In... 	Shift+Alt+W
	Go to Line 	Ctrl+L
	Previous 	Ctrl+,
	Next 	Ctrl+.
	Collapse All 	Shift+Ctrl+Numpad_Divide
	Forward History 	Alt+Right

VHDL specific
	Description 	Keyboard shortcut
	Search references 	Shift+Ctrl+G
	Rename – Refactoring 	Shift+Alt+R
	Comment 	Shift+Ctrl+/
	Uncomment 	Shift+Ctrl+\
	Open Declaration 	F3
	Open matching entity 	Shift+F3
	Go to next problem 	Shift+.
	Go to previous problem 	Shift+,

Advanced search
	Description 	Keyboard shortcut
	Find Text in Workspace 	Ctrl+Alt+G
	Open Search Dialog 	Ctrl+H
	Previous Word 	Ctrl+Left

Advanced editing
	Description 	Keyboard shortcut
	Insert Line Above Current Line 	Shift+Ctrl+Enter
	Scroll Line Down 	Ctrl+Down
	Delete Next Word 	Ctrl+Delete
	Test Start 	Ctrl+Home
	Toggle Overwrite 	Insert
	Insert Line Below Current Line 	Shift+Enter
	Delete Previous Word 	Ctrl+Backspace
	Delete Line 	Ctrl+D
	Copy Lines 	Ctrl+Alt+Down
	Duplicate Lines 	Ctrl+Alt+Up
	Move Lines Down 	Alt+Down
	Delete to End of Line 	Shift+Ctrl+Delete
	Select Next Word 	Shift+Ctrl+Right
	Scroll Line Up 	Ctrl+Up
	Select Line End 	Shift+End
	Move Lines Up 	Alt+Up
	Join Lines 	Ctrl+Alt+J
	To Upper Case 	Shift+Ctrl+X
	Select Line Start 	Shift+Home
	To Lower Case 	Shift+Ctrl+Y
	Select Previous Word 	Shift+Ctrl+Left
	Next Word 	Ctrl+Right
	Text End 	Ctrl+End
	Line Start 	Home
	Line End 	End

Views
	Description 	 Keyboard shortcut
	Maximize Active View or Editor 	Ctrl+M
	Next Editor 	Ctrl+F6
	Next View 	Ctrl+F7
	Show View Menu 	Ctrl+F10
	Show Key Assist 	Shift+Ctrl+L
	Show System Menu 	Alt+-
	Show Ruler Context Menu 	Ctrl+F10
	Previous Editor 	Shift+Ctrl+F6
	Activate Editor 	F12
	Switch to Editor 	Shift+Ctrl+E
	Previous View 	Shift+Ctrl+F7
	Quick Access 	Ctrl+3
	Quick Switch Editor 	Ctrl+E

Configuring Your Design Environment

Annotations Colors
Annotations are colors added on top of your text editor, and to the right of your text editor, in the scroll bar. The image below shows annotations for each occurrence of a certain data type. The color has been changed to bright green.
[image: Annotations in Bright Green]
Annotations, Displayed in Bright Green

You can change the color of annotations in Window > Preferences > General > Editors > Text Editors > Annotations. For the particular case of occurrence annotations, you want to modify the color for annotation type Occurrences.
If more than one Occurrences type is displayed, you need the org.eclipse.xtext.ui.editor.defaultOccurrenceAnnotation. The others may refer to occurrences for Java or other plug-ins.

The "Gutter"
The Gutter is the small area to the left of the editor view. It is used for displaying extra information about your code.
	Line numbers: What line is this?
	Quick Diff: Did this file change?
	Folding: hiding pieces of code from view
	Markers: error markers, warnings and bookmarks.

There is not much to configure about markers, but the other categories can be turned on or off.
Line numbers
To enable line numbers, right-click in the gutter and select Show Line Numbers.

OEBPS/images/icons/viewMenuIcon.png

OEBPS/images/icons/showPreviousMatch.png

OEBPS/images/icons/showNextMatch.png

OEBPS/images/icons/linkProjectExplorer.png
&

OEBPS/Sigasi-epub.jpg
/SlgaSL

User manual

